If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9=41
We move all terms to the left:
x^2+9-(41)=0
We add all the numbers together, and all the variables
x^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $
| -3(4m-5)=-21 | | 13x+8=9x+11=9x+6 | | 7x-9+35=180 | | -21=–3(4m–5) | | 11x/x=14 | | -(7-4x0=9 | | –18−17r=–18−18r+16 | | 15552=12b^-4 | | -|r+3|=19 | | y²-12=0 | | 2^x-6=24 | | 13x-1=25x= | | 6×(x+4)=x-11 | | 8(5x+6)=128 | | .3y=5.2y-1.1y+12.1y | | -5/2(w+1)=15 | | 10m+6(-2)=-2 | | |z|+3=10 | | 3/5(2m-10)=2/3m-10 | | 7=-2x+2 | | 32x=1856 | | 11x-4/x=10 | | 2(x+4)+3x-7=6 | | x2 -7x+12=0 | | 2m+19=m+23•2 | | 6+6x-5x=-8+3x | | 6×+2y=560 | | 70=13x+6+8x+3x | | -2(x-4)+3x=-2x+17 | | -6(x-2)+x=3x-20 | | -7=-19+3w | | -5(x+4)+2x=x+4 |